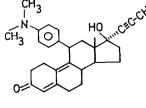
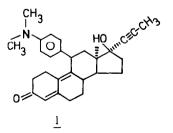
SYNTHETIC VARIATIONS OF THE PROGESTERONE ANTAGONIST RU 38 486

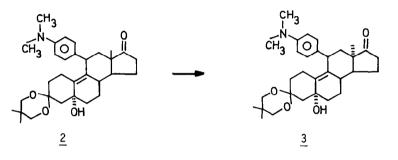

Günter Neef*, Gerhard Sauer, Arne Seeger and Rudolf Wiechert Research Laboratories of Schering AG Berlin/Bergkamen, D-1000 Berlin 65, Federal Republic of Germany

Summary: Irradiation of 17-keto-estranes bearing an ll-aryl substituent offers a preparatively useful access to pharmacologically interesting steroids with inverted configuration at C-13.

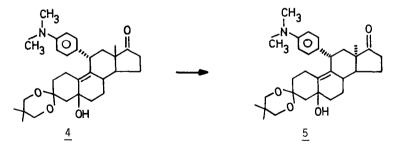

llB-(4-Dimethylaminophenyl)-l7B-hydroxy-l7 α -(l-propinyl)-4,9-estradien-3-one (Ru 38 486) has turned out to be the first competitive progesterone antagonist¹⁾. A second, equally remarkable property of this compound is its strong anti-glucocorticoid activity. Possible applications of Ru 38 486 include human fertility regulation and treatment of corticoid induced side effects such as Cushing's syndrome²⁾.

First clinical studies³⁾ indicated that it might be desirable to increase the anti-progestational potency of Ru 38 486 and to get rid of the anti-gluco-corticoid component. The hitherto unknown pharmacological profile and our lack of information concerning the progesterone receptor⁴⁾ demanded an empirical structure-activity study, part of which is summarized in this report.

Among the multitude of conceivable structural alterations we chose to invert C-13 stereochemistry, a process which should ultimately lead to gonane derivative <u>1</u>. This idea was inspired by a previous observation that the C-13 epimers of norethisterone showed comparable affinities for the progesterone receptor⁵.


Ru 38 486

An obvious synthetic approach to compound \underline{l} , namely applying Teutsch's synthetic strategy $^{6\,)}$ to 13-epi estrone methyl ether turned out to be


wearisome because it was difficult to prepare large quantities of 13-epi estrone methyl ether by the known methods^{7,8}). Furthermore, the conformational diversity of 13-episteroids from the natural series offered serious problems to synthesize compounds of type $\underline{1}$ by mere analogy to the Roussel-Uclaf sequence⁶.

We, therefore, had to look for an alternative method to get access to 13-episteroids of type <u>1</u>. The intermediate <u>2</u> of Teutsch's synthetic scheme proved to be a suitable starting material. Irradiation of <u>2</u> proceeded smoothly with formation of its epimer <u>3</u> isolated in a 62% yield. The ease and the yield of this transformation⁹ are in marked contrast to the difficulties normally encountered in photochemical epimerizations of 17-ketosteroids¹⁰.

It may seem plausible at first sight that the epimerization of 2 versus 3 should constitute a thermodynamically favorable process, as the 1,3-diaxial relationship between llB-aryl substituent and l3B-methyl group is replaced by a less hindered arrangement of these substituents.

The following experiment, however, shows that this hypothesis cannot account for the observed result. Irradiation of the $ll\alpha$ -aryl substituted compound $\underline{4}^{[1]}$ proceeds equally well to give the epimer 5 in an isolated yield of 67%.

In this case the photochemical process creates a 1,3-diaxial relationship between 11α -aryl substituent and 13α -methyl group. Although molecular models show that compound <u>5</u> could exist in a conformation which would avoid such an interaction, the ¹H nmr spectrum of <u>5</u> leaves no doubt about a 1,3-diaxial arrangement (large upfield shift of C-13 methyl signal). A further conclusion based on the nmr spectrum and molecular models is, that ring C of epimer 5 must adopt a boat-like conformation.

Characteristic chemical shifts:

		,		¹ H nmr(CDCl ₃)		
	comp.	R ¹	R [∠]	R ³	⁸ C-13-CH ₃ (s)	^δ H-11(m)
R ² R ³⁰	Ιa	α-0H	ß-aryl	B-CH3	0.51	4.23
	Ιb	α-0H	ß-aryl	α-CH ₃	1.10	3.74
	Ιc	ß–0H	α-aryl	ß-CH ₃	0.98	3.78
LOT RI	Ιd	В– ОН	α-aryl	α-CH ₃	0.47	3.96
Ι		aryl =	4-dimet	hylami	nophenyl	

aryl = 4-dimethylaminophenyl

Thus the basis was laid for the synthesis of several epimers of Ru 38 486. The question that remained to be investigated was site-specificity of nucleophilic attack upon ketones 3 and 5. Sodium borohydride reduction of ketone 3 produced a mixture of C-17-epimeric alcohols with a slight predominance of B-side attack (α -OH/B-OH = 6:4). Ketone 5 gave a similar result on reduction with sodium borohydride or diisobutyl aluminum hydride. B-Selectivity was more pronounced in the case of nucleophilic attack by

propinyl lithium: epimer 3 produced an 85/15 mixture of isomers in favor of the 17B-alkinyl compound and ketone 5 was almost exclusively attacked from the β -face of the molecule (95/5).

354-5	comp.	R ¹	R ²	R ³	R ⁴	⁸⁵	⁶ с-13-СН ₃ (СНС1 ₃) ³	δ _{C-13-CH₃ (pyridine)}
R	IIa	α-0H	ß-aryl	α-CH ₃	B-OH	α-Η	1.04	1.16
\downarrow	IIb	α-0H	ß-aryl	α-CH ₃	α-0H	ß-H	0.99	1.26
	II c	ß-ОН	α-aryl	α-CH ₃	ß-0Н	α-H	0.22	0.44
	ΙΙd	в-он	α-aryl	α-CH ₃	α-0Η	В-Н	0.24	0.63
ΙI	IIe	α-0H	ß-aryl	α-CH ₃	в-он	α-C≡C-CH ₃	1.14	1.36
	IIf	α-0H	ß-aryl	α-CH ₃	^{ß–C≡C–CH} 3	α-0H	1.10	1.44

Solvent-induced shifts (assignment of C-17 configuration)

Acid hydrolysis of intermediate II e under the conditions described by Teutsch et al.⁶⁾ produced the target compound <u>l</u> which was tested for anti-progestational and anti-glucocorticoid activities. The rather interesting biological results obtained for compound <u>l</u> and several related derivatives will be the subject of a forthcoming publication.

Acknowledgment: We gratefully acknowledge the technical assistance of G. Ast and H. Vierhufe

References and notes:

- D. Philibert, R. Deraedt, C. Tournemine, I. Mary and G. Teutsch, J. Steroid Biochem. 17, LXVIII (1982).
- D.L. Healey, E.E. Beaulieu and G.D. Hodgen, Fertility and Sterility 40, 253 (1982).
- W. Herrmann, R. Wyss, A. Riondel, D. Philibert, G. Teutsch, E. Sakiz and E.E. Beaulieu, Comptes Rendus 294, 933 (1982).
- 4. F.J. Zeelen, Trends in Pharm. Sciences (TIPS) 1983, 520.
- 5. U. Eder and E. Schillinger, unpublished results.
- 6. A. Bélanger, D. Philibert and G. Teutsch, Steroids 37, 361 (1981).
- 7. A. Butenandt and L. Poschmann, Ber. 77, 394, 1944.
- R.B. Boar, F.K. Jetuah, J.F. McGhie, M.S. Robinson and D.H.R. Barton, J.C.S. Perkin I 1977, 2163.
- 9. In a typical experiment a solution of <u>2</u> in dioxane (4 g, 600 ml) is irradiated in a quartz immersion apparatus for 23 min at 25°C (Hg-high pressure lamp, Philips HPK 125) using the full spectrum of the lamp. Evaporation of the solvent followed by chromatography on neutral alumina with hexane/ethyl acetate yields 3 (2,48 g).
- 10. H. Wehrli and K. Schaffner, Helv. Chim. Acta 45, 385 (1962).
- 11. G. Teutsch and A. Bélanger, Tetrahedron Lett. 2051, 1979.

(Received in Germany 15 March 1984)